0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Закон и сила всемирного тяготения. Сила всемирного тяготения: характеристика и практическая значимость

Закон всемирного тяготения.

Содержание

Закон всемирного тяготения

Можно лишь догадываться о волнении, охватившем Ньютона, когда он пришел к великому результату: одна и та же причина вызывает явления поразительно широкого диапазона — от падения брошенного камня на Землю до движения огромных космических тел. Ньютон нашел эту причину и смог точно выразить ее в виде одной формулы — закона всемирного тяготения.

Так как сила всемирного тяготения сообщает всем телам одно и то же ускорение независимо от их массы, то она должна быть пропорциональна массе того тела, на которое действует:

Но поскольку, например, Земля действует на Луну с силой, пропорциональной массе Луны, то и Луна по третьему закону Ньютона должна действовать на Землю с той же силой. Причем эта сила должна быть пропорциональна массе Земли. Если сила тяготения является действительно универсальной, то со стороны данного тела на любое другое тело должна действовать сила, пропорциональная массе этого другого тела. Следовательно, сила всемирного тяготения должна быть пропорциональна произведению масс взаимодействующих тел. Отсюда вытекает формулировка закона всемирного тяготения.

Определение закона всемирного тяготения

Сила взаимного притяжения двух тел прямо пропорциональна произведению масс этих тел и обратно пропорциональна квадрату расстояния между ними:

Коэффициент пропорциональности G называется гравитационной постоянной.

Гравитационная постоянная численно равна силе притяжения между двумя материальными точками массой 1 кг каждая, если расстояние между ними равно 1 м. Ведь при m1=m2=1 кг и R=1 м получаем G=F (численно).

Нужно иметь в виду, что закон всемирного тяготения (4.5) как всеобщий закон справедлив для материальных точек. При этом силы гравитационного взаимодействия направлены вдоль линии, соединяющей эти точки (рис.4.2). Подобного рода силы называются центральными.

Можно показать, что однородные тела, имеющие форму шара (даже если их нельзя считать материальными точками), также взаимодействуют с силой, определяемой формулой (4.5). В этом случае R — расстояние между центрами шаров. Силы взаимного притяжения лежат на прямой, проходящей через центры шаров. (Такие силы и называются центральными.) Тела, падение которых на Землю мы обычно рассматриваем, имеют размеры, много меньшие, чем земной радиус (R≈6400 км). Такие тела можно, независимо от их формы, рассматривать как материальные точки и определять силу их притяжения к Земле с помощью закона (4.5), имея в виду, что R есть расстояние от данного тела до центра Земли.

Определение гравитационной постоянной

Теперь выясним, как можно найти гравитационную постоянную. Прежде всего заметим, что G имеет определенное наименование. Это обусловлено тем, что единицы (и соответственно наименования) всех величин, входящих в закон всемирного тяготения, уже были установлены ранее. Закон же тяготения дает новую связь между известными величинами с определенными наименованиями единиц. Именно поэтому коэффициент оказывается именованной величиной. Пользуясь формулой закона всемирного тяготения, легко найти наименование единицы гравитационной постоянной в СИ:

Для количественного определения G нужно независимо определить все величины, входящие в закон всемирного тяготения: обе массы, силу и расстояние между телами. Использовать для этого астрономические наблюдения нельзя, так как определить массы планет, Солнца, да и Земли, можно лишь на основе самого закона всемирного тяготения, если значение гравитационной постоянной известно. Опыт должен быть проведен на Земле с телами, массы которых можно измерить на весах.

Трудность состоит в том, что гравитационные силы между телами небольших масс крайне малы. Именно по этой причине мы не замечаем притяжение нашего тела к окружающим предметам и взаимное притяжение предметов друг к другу, хотя гравитационные силы — самые универсальные из всех сил в природе. Два человека массами по 60 кг на расстоянии 1 м друг от друга притягиваются с силой всего лишь порядка 10 -9 Н. Поэтому для измерения гравитационной постоянной нужны достаточно тонкие опыты.

Впервые гравитационная постоянная была измерена английским физиком Г. Кавендишем в 1798 г. с помощью прибора, называемого крутильными весами. Схема крутильных весов показана на рисунке 4.3. На тонкой упругой нити подвешено легкое коромысло с двумя одинаковыми грузиками на концах. Рядом неподвижно закреплены два тяжелых шара. Между грузиками и неподвижными шарами действуют силы тяготения. Под влиянием этих сил коромысло поворачивается и закручивает нить. По углу закручивания можно определить силу притяжения. Для этого нужно только знать упругие свойства нити. Массы тел известны, а расстояние между центрами взаимодействующих тел можно непосредственно измерить.

Из этих опытов было получено следующее значение для гравитационной постоянной:

Лишь в том случае, когда взаимодействуют тела огромных масс (или по крайней мере масса одного из тел очень велика), сила тяготения достигает большой величины. Например, Земля и Луна притягиваются друг к другу с силой F≈2•10 20 H.

Зависимость ускорения свободного падения тел от географической широты

Одна из причин увеличения ускорения свободного падения при перемещении точки, где находится тело, от экватора к полюсам, состоит в том, что земной шар несколько сплюснут у полюсов и расстояние от центра Земли до ее поверхности у полюсов меньше, чем на экваторе. Другой, более существенной причиной является вращение Земли.

Равенство инертной и гравитационной масс

Самым поразительным свойством гравитационных сил является то, что они сообщают всем телам, независимо от их масс, одно и то же ускорение. Что бы вы сказали о футболисте, удар которого одинаково ускорял бы обыкновенный кожаный мяч и двухпудовую гирю? Каждый скажет, что это невозможно. А вот Земля является именно таким «необыкновенным футболистом» с той только разницей, что действие ее на тела не носит характера кратковременного удара, а продолжается непрерывно миллиарды лет.

Необыкновенное свойство гравитационных сил, как мы уже говорили, объясняется тем, что эти силы пропорциональны массам обоих взаимодействующих тел. Факт этот не может не вызывать удивления, если над ним хорошенько задуматься. Ведь масса тела, которая входит во второй закон Ньютона, определяет инертные свойства тела, т. е. его способность приобретать определенное ускорение под действием данной силы. Эту массу естественно назвать инертной массой и обозначить через mи.

Читать еще:  Проблемы в общении с подругами. Как создать хорошие отношения? Отношения с подругой: как выходить из кризиса дружбы

Казалось бы, какое отношение она может иметь к способности тел притягивать друг друга? Массу, определяющую способность тел притягиваться друг к другу, следует назвать гравитационной массой mг.

Из механики Ньютона совсем не следует, что инертная и гравитационная массы одинаковы, т. е. что

Равенство (4.6) является непосредственным следствием из опыта. Оно означает, что можно говорить просто о массе тела как о количественной мере как инертных, так и гравитационных его свойств.

Закон всемирного тяготения является одним из самых универсальных законов природы. Он справедлив для любых тел, обладающих массой.

Значение закона всемирного тяготения

Но если подойти к этой теме, более кардинально, то выясняется, что закон всемирного тяготения не везде есть возможность его применения. Этот закон нашел свое применение для тел, которые имеют форму шара, его можно использовать для материальных точек, а также он приемлем для шара, имеющего большой радиус, где этот шар может взаимодействовать с телами, гораздо меньшими, чем его размеры.

Но вот для тела и бесконечной плоскости, а также для взаимодействия бесконечного стержня и шара эту формулу применять нельзя.

Как вы уже догадались из информации, предоставленной на этом уроке, что закон всемирного тяготения является основой в изучении небесной механики. А как вы знаете, небесная механика изучает движение планет.

Благодаря этому закону всемирного тяготения, появилась возможность в более точном определении расположения небесных тел и возможность вычисления их траектории.

С помощью этого закона можно рассчитать и движение искусственных спутников Земли, а также и созданных других межпланетных аппаратов.

Но вот для тела и бесконечной плоскости, а также для взаимодействия бесконечного стержня и шара эту формулу применять нельзя.

С помощью этого закона Ньютон смог объяснить не только то, как движутся планеты, но и почему возникают морские приливы и отливы. По истечении времени, благодаря трудам Ньютона, астрономам удалось открыть такие планеты Солнечной системы, как Нептун и Плутон.

Важность открытия закона всемирного тяготения заключается в том, что с его помощью появилась возможность делать прогнозы солнечных и лунных затмений и с точностью рассчитывать движения космических кораблей.

Силы всемирного тяготения являются наиболее универсальными со всех сил природы. Ведь их действие распространяется на взаимодействие между любыми телами, имеющими массу. А как известно, то любое тело обладает массой. Силы тяготения действуют сквозь любые тела, так как для сил тяготения нет приград.

Задача

А теперь, чтобы закрепить знания о законе всемирного тяготения, давайте попробуем рассмотреть и решить интересную задачу. Ракета поднялась на высоту h равную 990 км. Определите, насколько уменьшилась сила тяжести, действующая на ракету на высоте h, по сравнению с силой тяжести mg, действующей на нее у поверхности Земли? Радиус Земли R = 6400 км. Обозначим через m массу ракеты, а через M массу Земли.

Будем считать, что на ракету действует только сила тяготения Земли и центробежной силой можно пренебречь из-за малой угловой скорости вращения Земли. Поэтому можно записать, что сила тяжести на Земле:

На высоте h сила тяжести равняется:

Подстановка значение даст результат:

Интересные факты

Легенду про то, как Ньютон открыл закон всемирного тяготения, получив яблоком по макушке, придумал Вольтер. Причем сам Вольтер уверял, что эту правдивую историю ему рассказала любимая племянница Ньютона Кэтрин Бартон. Вот только странно, что ни сама племянница, ни ее очень близкий друг Джонатан Свифт, в своих воспоминаниях о Ньютоне про судьбоносное яблоко никогда не упоминали. Кстати и сам Исаак Ньютон, подробно записывая в своих тетрадях результаты экспериментов по поведению разных тел, отмечал только сосуды, наполненные золотом, серебром, свинцом, песком, стеклом водой или пшеницей, ни как ни о яблоке. Впрочем, это не помешало потомкам Ньютона водить экскурсантов по саду в имении Вулсток и показывать им ту самую яблоню, пока ее не сломала буря.

Да, яблоня была, и яблоками наверняка с нее падали, но насколько велика заслуга яблока в деле открытия закона всемирного тяготения?

Споры о яблоке не затихают вот уже 300 лет, так же как и споры о самом законе всемирного тяготения верее о том, кому принадлежит приоритет открытия.ук

Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский, Физика 10 класс

Закон всемирного тяготения. Сила тяжести. Невесомость

Между любыми телами в природе существует сила взаимного притяжения, называемая силой всемирного тяготения (или силами гравитации). Закон всемирного тяготения был открыт Исааком Ньютоном в 1682 году. Когда еще ему было 23 года он высказал предположение, что силы, удерживающие Луну на ее орбите, той же природы, что и силы, заставляющие яблоко падать на Землю.

Закон всемирного тяготения: Все тела притягиваются друг к другу с силой прямо пропорциональной произведению масс этих тел и обратно пропорциональной квадрату расстояния между ними.

где F сила всемирного тяготения, m1 , m2 массы тел, R расстояние между телами. Коэффициент пропорциональности G одинаков для всех тел в природе. Его называют гравитационной постоянной

Физический смысл гравитационной постоянной: гравитационная постоянная численно равна модулю силы тяготения, действующей между двумя точечными телами массой по 1 кг каждое, находящимися на расстоянии 1 м друг от друга.

опыт Кавендиша

G = 6,67· 10 -11 Н м 2 /кг 2 . Впервые прямые измерения гравитационной постоянной провел Г. Кавендиш с помощью крутильных весов в 1798г.

Для тел, находящихся вблизи поверхности планет (в частности Земли) частным случаем проявления силы тяготения является сила тяжести: где gускорение свободного падения, g = 9,8 м/с 2

Сила тяжестиэто сила, с которой Земля притягивает тело, находящееся на её поверхности или вблизи этой поверхности.

Сила тяжести (mg) направлена вертикально строго к центру Земли; в зависимости от расстояния до поверхности земного шара ускорение свободного падения различно. У поверхности Земли в средних широтах значение его составляет около 9,8 м/с 2 . по мере удаления от поверхности Земли g уменьшается.

Читать еще:  Пуловер с асимметричным низом. Пуловер спицами с асимметричным низом. Описание свитера спицами с рельефным узором

Вес тела (сила веса) – это сила, с которой тело действует на горизонтальную опору или растягивает подвес. При этом предполагается, что тело неподвижно относительно опоры или подвеса. Пусть тело лежит на неподвижном относительно Земли горизонтальном столе. Обозначается буквой Р.

Вес тела и сила тяжести отличаются по своей природе: вес тела является проявлением действия межмолекулярных сил, а сила тяжести имеет гравитационную природу.

Если ускорение а = 0, то вес равен силе, с которой тело притягивается к Земле, а именно . [P] = Н.

Если другое состояние, то вес меняется:

  • если ускорение а не равно , то вес Р = mg — ma(вниз) илиР = mg + ma(вверх);
  • если тело падает свободно или движется с ускорением свободного падения, т.е. а =g (рис.2), то вес тела равен (Р=0). Состояние тела, в котором его вес равен нулю, называетсяневесомостью.

В невесомости находятся и космонавты. В невесомости на мгновение оказываетесь и вы, когда подпрыгиваете во время игры в баскетбол или танца.

Домашний эксперимент: Пластиковая бутылка с отверстием у дна наполняется водой. Выпускаем из рук с некоторой высоты. Пока бутылка падает, вода из отверстия не вытекает.

Вес тела движущегося с ускорением (в лифте) Тело в лифте испытывает перегрузки

Закон и сила всемирного тяготения. Сила всемирного тяготения: характеристика и практическая значимость

«Физика — 10 класс»

Почему Луна движется вокруг Земли?
Что будет, если Луна остановится?
Почему планеты обращаются вокруг Солнца?

В главе 1 подробно говорилось о том, что земной шар сообщает всем телам у поверхности Земли одно и то же ускорение — ускорение свободного падения. Но если земной шар сообщает телу ускорение, то согласно второму закону Ньютона он действует на тело с некоторой силой. Силу, с которой Земля действует на тело, называют силой тяжести. Сначала найдём эту силу, а затем и рассмотрим силу всемирного тяготения.

Ускорение по модулю определяется из второго закона Ньютона:

В общем случае оно зависит от силы, действующей на тело, и его массы. Так как ускорение свободного падения не зависит от массы, то ясно, что сила тяжести должна быть пропорциональна массе:

= m (3.1)

Физическая величина — ускорение свободного падения, оно постоянно для всех тел.

На основе формулы F = mg можно указать простой и практически удобный метод измерения масс тел путём сравнения массы данного тела с эталоном единицы массы. Отношение масс двух тел равно отношению сил тяжести, действующих на тела:

Это значит, что массы тел одинаковы, если одинаковы действующие на них силы тяжести.

На этом основано определение масс путём взвешивания на пружинных или рычажных весах. Добиваясь того, чтобы сила давления тела на чашку весов, равная силе тяжести, приложенной к телу, была уравновешена силой давления гирь на другую чашку весов, равной силе тяжести, приложенной к гирям, мы тем самым определяем массу тела.

Сила тяжести, действующая на данное тело вблизи Земли, может считаться постоянной лишь на определенной широте у поверхности Земли. Если тело поднять или перенести в место с другой широтой, то ускорение свободного падения, а следовательно, и сила тяжести изменятся.

Сила всемирного тяготения.

Ньютон был первым, кто строго доказал, что причина, вызывающая падение камня на Землю, движение Луны вокруг Земли и планет вокруг Солнца, одна и та же. Это сила всемирного тяготения, действующая между любыми телами Вселенной.

Ньютон пришёл к выводу, что если бы не сопротивление воздуха, то траектория камня, брошенного с высокой горы (рис. 3.1) с определённой скоростью, могла бы стать такой, что он вообще никогда не достиг бы поверхности Земли, а двигался бы вокруг неё подобно тому, как планеты описывают в небесном пространстве свои орбиты.

Итак, по мнению Ньютона, движение Луны вокруг Земли или движение планет вокруг Солнца — это тоже свободное падение, которое длится, не прекращаясь, миллиарды лет. Причиной такого падения (идёт ли речь действительно о падении обычного камня на Землю или о движении планет по их орбитам) служит сила тяготения.

Земля сообщает Луне ускорение, которое не зависит от массы Луны и, как показали расчёты, в (60)2 раз меньше ускорения тел на Земле. Расстояние до Луны в 60 раз больше радиуса Земли. Отсюда Ньютон сделал вывод, что ускорение и соответственно сила притяжения тел к Земле обратно пропорциональны квадрату расстояния до центра Земли:

Также Ньютон установил, что Солнце сообщает всем планетам ускорение, обратно пропорциональное квадрату расстояния от планет до Солнца.

Закон всемирного тяготения.

Можно лишь догадываться о волнении, охватившем Ньютона, когда он пришёл к великому результату: одна и та же причина вызывает явления поразительно широкого диапазона — от падения брошенного камня на землю до движения огромных космических тел.

Ньютон нашёл эту причину и смог точно выразить её в виде одной формулы — закона всемирного тяготения.

Так как сила всемирного тяготения сообщает всем телам одно и то же ускорение независимо от их массы, то она должна быть пропорциональна массе того тела, на которое действует:

«Тяготение существует ко всем телам вообще и пропорционально массе каждого из них. все планеты тяготеют друг к другу. » И. Ньютон

Но поскольку, например, Земля действует на Луну с силой, пропорциональной массе Луны, то и Луна по третьему закону Ньютона должна действовать на Землю с той же силой. Причём эта сила должна быть пропорциональна массе Земли. Если сила тяготения является действительно универсальной, то со стороны данного тела на любое другое тело должна действовать сила, пропорциональная массе этого другого тела. Следовательно, сила всемирного тяготения должна быть пропорциональна произведению масс взаимодействующих тел. Отсюда вытекает формулировка закона всемирного тяготения.

Закон всемирного тяготения:

Читать еще:  На какой руке носят кольцо женатые. На какой руке и на каком пальце носят обручальные кольца в России

Сила взаимного притяжения двух тел прямо пропорциональна произведению масс этих тел и обратно пропорциональна квадрату расстояния между ними:

Коэффициент пропорциональности G называется гравитационной постоянной.

Гравитационная постоянная численно равна силе притяжения между двумя материальными точками массой 1 кг каждая, если расстояние между ними равно 1 м. Ведь при массах m1 = m2 = 1 кг и расстоянии r = 1 м получаем G = F (численно).

Нужно иметь в виду, что закон всемирного тяготения (3.4) как всеобщий закон справедлив для материальных точек. При этом силы гравитационного взаимодействия направлены вдоль линии, соединяющей эти точки (рис. 3.2, а).

Можно показать, что однородные тела, имеющие форму шара (даже если их нельзя считать материальными точками, рис. 3.2, б), также взаимодействуют с силой, определяемой формулой (3.4). В этом случае r — расстояние между центрами шаров. Силы взаимного притяжения лежат на прямой, проходящей через центры шаров. Такие силы называются центральными. Тела, падение которых на Землю мы обычно рассматриваем, имеют размеры, много меньшие, чем земной радиус (R ≈ 6400 км).

Такие тела можно, независимо от их формы, рассматривать как материальные точки и определять силу их притяжения к Земле с помощью закона (3.4), имея в виду, что r есть расстояние от данного тела до центра Земли.

Брошенный на Землю камень отклонится под действием тяжести от прямолинейного пути и, описав кривую траекторию, упадёт наконец на Землю. Если его бросить с большей скоростью, то он упадёт дальше». И. Ньютон

Определение гравитационной постоянной.

Теперь выясним, как можно найти гравитационную постоянную. Прежде всего заметим, что G имеет определённое наименование. Это обусловлено тем, что единицы (и соответственно наименования) всех величин, входящих в закон всемирного тяготения, уже были установлены ранее. Закон же тяготения даёт новую связь между известными величинами с определёнными наименованиями единиц. Именно поэтому коэффициент оказывается именованной величиной. Пользуясь формулой закона всемирного тяготения, легко найти наименование единицы гравитационной постоянной в СИ: Н • м 2 /кг 2 = м 3 /(кг • с 2 ).

Для количественного определения G нужно независимо определить все величины, входящие в закон всемирного тяготения: обе массы, силу и расстояние между телами.

Оцените силу гравитационного взаимодействия между вами и вашим соседом по парте. Считайте, что вы нахояитесь на расстоянии r = 0,5 м.

Трудность состоит в том, что гравитационные силы между телами небольших масс крайне малы. Именно по этой причине мы не замечаем притяжение нашего тела к окружающим предметам и взаимное притяжение предметов друг к другу, хотя гравитационные силы — самые универсальные из всех сил в природе. Два человека массами по 60 кг на расстоянии 1 м друг от друга притягиваются с силой всего лишь порядка 10 -9 Н. Поэтому для измерения гравитационной постоянной нужны достаточно тонкие опыты.

Впервые гравитационная постоянная была измерена английским физиком Г. Кавендишем в 1798 г. с помощью прибора, называемого крутильными весами. Схема крутильных весов показана на рисунке 3.3. На тонкой упругой нити подвешено лёгкое коромысло с двумя одинаковыми грузиками на концах. Рядом неподвижно закреплены два тяжёлых шара. Между грузиками и неподвижными шарами действуют силы тяготения. Под влиянием этих сил коромысло поворачивается и закручивает нить до тех пор, пока возникающая сила упругости не станет равна гравитационной силе. По углу закручивания можно определить силу притяжения. Для этого нужно только знать упругие свойства нити. Массы тел известны, а расстояние между центрами взаимодействующих тел можно непосредственно измерить.

Из этих опытов было получено следующее значение для гравитационной постоянной:

G = 6,67 • 10 -11 Н • м 2 /кг 2 .

Лишь в том случае, когда взаимодействуют тела огромных масс (или по крайней мере масса одного из тел очень велика), сила тяготения достигает большого значения. Например, Земля и Луна притягиваются друг к другу с силой F ≈ 2 • 10 20 Н.

Зависимость ускорения свободного падения тел от географической широты.

Одна из причин увеличения ускорения свободного падения при перемещении точки, где находится тело, от экватора к полюсам, состоит в том, что земной шар несколько сплюснут у полюсов и расстояние от центра Земли до её поверхности у полюсов меньше, чем на экваторе. Другой причиной является вращение Земли.

Равенство инертной и гравитационной масс.

Самым поразительным свойством гравитационных сил является то, что они сообщают всем телам, независимо от их масс, одно и то же ускорение. Что бы вы сказали о футболисте, удар которого одинаково ускорял бы обыкновенный кожаный мяч и двухпудовую гирю? Каждый скажет, что это невозможно. А вот Земля является именно таким «необыкновенным футболистом» с той только разницей, что действие её на тела не носит характера кратковременного удара, а продолжается непрерывно миллиарды лет.

В теории Ньютона масса является источником поля тяготения. Мы находимся в поле тяготения Земли. В то же время мы также являемся источниками поля тяготения, но в силу того, что наша масса существенно меньше массы Земли, наше поле намного слабее и окружающие предметы на него не реагируют.

Необыкновенное свойство гравитационных сил, как мы уже говорили, объясняется тем, что эти силы пропорциональны массам обоих взаимодействующих тел. Масса тела, которая входит во второй закон Ньютона, определяет инертные свойства тела, т. е. его способность приобретать определённое ускорение под действием данной силы. Это инертная масса mи.

Казалось бы, какое отношение она может иметь к способности тел притягивать друг друга? Масса, определяющая способность тел притягиваться друг к другу, — гравитационная масса mr.

Из механики Ньютона совсем не следует, что инертная и гравитационная массы одинаковы, т. е. что

Равенство (3.5) является непосредственным следствием из опыта. Оно означает, что можно говорить просто о массе тела как о количественной мере как инертных, так и гравитационных его свойств.

Источник: «Физика — 10 класс», 2014, учебник Мякишев, Буховцев, Сотский

Динамика — Физика, учебник для 10 класса — Класс!ная физика

Источники:

http://edufuture.biz/index.php?title=%D0%97%D0%B0%D0%BA%D0%BE%D0%BD_%D0%B2%D1%81%D0%B5%D0%BC%D0%B8%D1%80%D0%BD%D0%BE%D0%B3%D0%BE_%D1%82%D1%8F%D0%B3%D0%BE%D1%82%D0%B5%D0%BD%D0%B8%D1%8F.
http://kaplio.ru/zakon-vsemirnogo-tyagoteniya-sila-tyazhesti-nevesomost/
http://class-fizika.ru/10_a30.html

Ссылка на основную публикацию
Статьи c упоминанием слов:

Adblock
detector